<noscript id="to0tq"><progress id="to0tq"><th id="to0tq"></th></progress></noscript>
    • <label id="to0tq"><progress id="to0tq"></progress></label>
      首頁 園況介紹 科學研究 園林園藝 環(huán)境教育 黨建文化 紀檢監(jiān)察 信息公開 簡報年報
      首頁 > 科學研究 > 研究成果 > 論文

      論文

      Phylotranscriptomics supports numerous polyploidization events and phylogenetic relationships in Nicotiana

      論文作者Shuaibin Wang , Junping Gao , Zhaowu Li , Kai Chen , Wenxuan Pu and Chen Feng *
      刊物Frontiers in Plant Science
      標識符10.3389/fpls.2023.1205683
      摘要

      Introduction: Nicotiana L. (Solanaceae) is of great scientific and economic importance, and polyploidization has been pivotal in shaping this genus. Despite many previous studies on the Nicotiana phylogenetic relationship and hybridization, evidence from whole genome data is still lacking.

      Methods: In this study, we obtained 995 low-copy genes and plastid transcript fragments from the transcriptome datasets of 26 Nicotiana species, including all sections. We reconstructed the phylogenetic relationship and phylogenetic network of diploid species. 

      Results: The incongruence among gene trees showed that the formation of N. sylvestris involved incomplete lineage sorting. The nuclear–plastid discordance and nuclear introgression absence indicated that organelle capture from section Trigonophyllae was involved in forming section Petunioides. Furthermore, we analyzed the evolutionary origin of polyploid species and dated the time of hybridization events based on the analysis of PhyloNet, sequence similarity search, and phylogeny of subgenome approaches. Our results highly evidenced the hybrid origins of five polyploid sections, including sections Nicotiana, Repandae, Rusticae, Polydicliae, and Suaveolentes. Notably, we provide novel insights into the hybridization event of section Polydicliae and Suaveolentes. The section Polydicliae formed from a single hybridization event between maternal progenitor N. attenuata and paternal progenitor N. undulata; the N. sylvestris (paternal progenitor) and the N. glauca (maternal progenitor) were involved in the formation of section Suaveolentes.

      Discussion: This study represents the first exploration of Nicotiana polyploidization events and phylogenetic relationships using the highthroughput RNA-seq approach. It will provide guidance for further studies in molecular systematics, population genetics, and ecological adaption studies in Nicotiana and other related species.


      Phylotranscriptomics supports numerous polyploidization events and phylogenetic relationships in Nicotiana.pdf

      av毛片久久久久午夜福利HD,韩国黄色视频在线有码,在线精品自在视频观看,日韩人妻中文字幕视频在线
      <noscript id="to0tq"><progress id="to0tq"><th id="to0tq"></th></progress></noscript>
        • <label id="to0tq"><progress id="to0tq"></progress></label>